Predicting near-term variability in ocean carbon uptake

Interannual variations in air-sea fluxes of carbon dioxide (CO2) impact the global carbon cycle and climate system, and previous studies suggest that these variations may be predictable in the near term (from a year to a decade in advance). Here, we quantify and understand the sources of near-term predictability and predictive skill in air-sea CO2 flux on global and regional scales by analyzing output from a novel set of retrospective decadal forecasts of an Earth system model. These forecasts exhibit the potential to predict year-to-year variations in the globally integrated air-sea CO2 flux several years in advance, as indicated by the high correlation of the forecasts with a model reconstruction of past CO2 flux evolution. This potential predictability exceeds that obtained solely from foreknowledge of variations in external forcing or a simple persistence forecast, with the longest-lasting forecast enhancement in the subantarctic Southern Ocean and the northern North Atlantic. Potential predictability in CO2 flux variations is largely driven by predictability in the surface ocean partial pressure of CO2, which itself is a function of predictability in surface ocean dissolved inorganic carbon and alkalinity. The potential predictability, however, is not realized as predictive skill, as indicated by the moderate to low correlation of the forecasts with an observationally based CO2 flux product. Nevertheless, our results suggest that year-to-year variations in ocean carbon uptake have the potential to be predicted well in advance and establish a precedent for forecasting air-sea CO2 flux in the near future.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lovenduski, Nicole S.
Yeager, Stephen G.
Lindsay, Keith
Long, Matthew C.
Publisher UCAR/NCAR - Library
Publication Date 2019-01-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:19:21.928801
Metadata Record Identifier edu.ucar.opensky::articles:22284
Metadata Language eng; USA
Suggested Citation Lovenduski, Nicole S., Yeager, Stephen G., Lindsay, Keith, Long, Matthew C.. (2019). Predicting near-term variability in ocean carbon uptake. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7x63r0t. Accessed 17 July 2025.

Harvest Source