Identification

Title

Predicting near-term variability in ocean carbon uptake

Abstract

Interannual variations in air-sea fluxes of carbon dioxide (CO2) impact the global carbon cycle and climate system, and previous studies suggest that these variations may be predictable in the near term (from a year to a decade in advance). Here, we quantify and understand the sources of near-term predictability and predictive skill in air-sea CO2 flux on global and regional scales by analyzing output from a novel set of retrospective decadal forecasts of an Earth system model. These forecasts exhibit the potential to predict year-to-year variations in the globally integrated air-sea CO2 flux several years in advance, as indicated by the high correlation of the forecasts with a model reconstruction of past CO2 flux evolution. This potential predictability exceeds that obtained solely from foreknowledge of variations in external forcing or a simple persistence forecast, with the longest-lasting forecast enhancement in the subantarctic Southern Ocean and the northern North Atlantic. Potential predictability in CO2 flux variations is largely driven by predictability in the surface ocean partial pressure of CO2, which itself is a function of predictability in surface ocean dissolved inorganic carbon and alkalinity. The potential predictability, however, is not realized as predictive skill, as indicated by the moderate to low correlation of the forecasts with an observationally based CO2 flux product. Nevertheless, our results suggest that year-to-year variations in ocean carbon uptake have the potential to be predicted well in advance and establish a precedent for forecasting air-sea CO2 flux in the near future.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x63r0t

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-01-24T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:21.928801

Metadata language

eng; USA