Kilometer-scale multimodel and multiphysics ensemble simulations of a Mesoscale Convective System in the lee of the Tibetan Plateau: Implications for climate simulations

Kilometer-scale climate model simulations are useful tools to investigate past and future changes in extreme precipitation, particularly in mountain regions, where convection is influenced by complex topography and land-atmosphere interactions. In this study, we evaluate simulations of a flood-producing mesoscale convective system (MCS) downstream of the Tibetan Plateau (TP) in the Sichuan basin from a kilometer-scale multimodel and multiphysics ensemble. The aim is to better understand the physical processes that need to be correctly simulated for successfully capturing downstream MCS formation. We assess how the ensemble members simulate these processes and how sensitive the simulations are to different model configurations. The preceding vortex evolution over the TP, its interaction with the jet stream, and water vapor advection into the basin are identified as key processes for the MCS formation. Most modeling systems struggle to capture the interaction between the vortex and jet stream, and perturbing the model physics has little impact, while constraining the largescale flow by spectral nudging improves the simulation. This suggests that an accurate representation of the large-scale forcing is crucial to correctly simulate the MCS and associated precipitation. To verify whether the identified shortcomings systematically affect the MCS climatology in longer-term simulations, we evaluate a 1-yr WRF simulation and find that the seasonal cycle and spatial distribution of MCSs are reasonably well captured and not improved by spectral nudging. While the simulations of the MCS case highlight challenges in extreme precipitation forecasting, we conclude that these challenges do not systematically affect simulated climatological MCS characteristics.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kukulies, J.
Prein, Andreas
Curio, J.
Yu, H.
Chen, D.
Publisher UCAR/NCAR - Library
Publication Date 2023-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:14:48.088602
Metadata Record Identifier edu.ucar.opensky::articles:26577
Metadata Language eng; USA
Suggested Citation Kukulies, J., Prein, Andreas, Curio, J., Yu, H., Chen, D.. (2023). Kilometer-scale multimodel and multiphysics ensemble simulations of a Mesoscale Convective System in the lee of the Tibetan Plateau: Implications for climate simulations. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7tt4w04. Accessed 01 August 2025.

Harvest Source