Identification

Title

Kilometer-scale multimodel and multiphysics ensemble simulations of a Mesoscale Convective System in the lee of the Tibetan Plateau: Implications for climate simulations

Abstract

Kilometer-scale climate model simulations are useful tools to investigate past and future changes in extreme precipitation, particularly in mountain regions, where convection is influenced by complex topography and land-atmosphere interactions. In this study, we evaluate simulations of a flood-producing mesoscale convective system (MCS) downstream of the Tibetan Plateau (TP) in the Sichuan basin from a kilometer-scale multimodel and multiphysics ensemble. The aim is to better understand the physical processes that need to be correctly simulated for successfully capturing downstream MCS formation. We assess how the ensemble members simulate these processes and how sensitive the simulations are to different model configurations. The preceding vortex evolution over the TP, its interaction with the jet stream, and water vapor advection into the basin are identified as key processes for the MCS formation. Most modeling systems struggle to capture the interaction between the vortex and jet stream, and perturbing the model physics has little impact, while constraining the largescale flow by spectral nudging improves the simulation. This suggests that an accurate representation of the large-scale forcing is crucial to correctly simulate the MCS and associated precipitation. To verify whether the identified shortcomings systematically affect the MCS climatology in longer-term simulations, we evaluate a 1-yr WRF simulation and find that the seasonal cycle and spatial distribution of MCSs are reasonably well captured and not improved by spectral nudging. While the simulations of the MCS case highlight challenges in extreme precipitation forecasting, we conclude that these challenges do not systematically affect simulated climatological MCS characteristics.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7tt4w04

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:48.088602

Metadata language

eng; USA