Evaluating machine learning-based probabilistic convective hazard forecasts using the HRRR: Quantifying hazard predictability and sensitivity to training choices

The High-Resolution Rapid Refresh (HRRR) model provides hourly updating forecasts of convective-scale phenomena, which can be used to infer the potential for convective hazards (e.g., tornadoes, hail, and wind gusts), across the United States. We used deterministic 2019–20 HRRR, version 4 (HRRRv4), forecasts to train neural networks (NNs) to generate 4-hourly probabilistic convective hazard forecasts [neural network probability forecasts (NNPFs)] for HRRRv4 initializations in 2021, using storm reports as ground truth. The NNPFs were compared to the skill of a smoothed updraft helicity (UH) baseline to quantify the benefit of the NNs. NNPF skill varied by initialization time and time of day but was all superior to the UH forecast. NNPFs valid at hours between 1800 and 0000 UTC were most skillful in aggregate, significantly exceeding the baseline forecast skill. Overnight NNPFs (i.e., valid 0600–1200 UTC) were least skillful, indicating a diurnal cycle in hazard predictability that was present across all HRRRv4 initializations. We explored the sensitivity of HRRRv4 NNPF skill to NN training choices. Including an additional year of 2021 HRRRv4 forecasts for training slightly improved skill for 2022 HRRRv4 NNPFs, while reducing the training dataset size by 40% using only forecasts with storm reports was not detrimental to forecast skill. Finally, NNs trained with 2018–20 HRRRv3 forecasts led to a reduction in NNPF skill when applied to 2021 HRRRv4 forecasts. In addition to documenting practical predictability challenges with convective hazard prediction, these findings reinforce the need for a consistent model configuration for optimal results when training NNs and provide best practices when constructing a training dataset with operational convection-allowing model forecasts.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Preprint #1 : Generative ensemble deep learning severe weather prediction from a deterministic convection-allowing model

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2024 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sobash, Ryan A.
Ahijevych, David
Publisher UCAR/NCAR - Library
Publication Date 2024-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:58:10.553346
Metadata Record Identifier edu.ucar.opensky::articles:42479
Metadata Language eng; USA
Suggested Citation Sobash, Ryan A., Ahijevych, David. (2024). Evaluating machine learning-based probabilistic convective hazard forecasts using the HRRR: Quantifying hazard predictability and sensitivity to training choices. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7xw4q4g. Accessed 02 August 2025.

Harvest Source