Identification

Title

Evaluating machine learning-based probabilistic convective hazard forecasts using the HRRR: Quantifying hazard predictability and sensitivity to training choices

Abstract

The High-Resolution Rapid Refresh (HRRR) model provides hourly updating forecasts of convective-scale phenomena, which can be used to infer the potential for convective hazards (e.g., tornadoes, hail, and wind gusts), across the United States. We used deterministic 2019–20 HRRR, version 4 (HRRRv4), forecasts to train neural networks (NNs) to generate 4-hourly probabilistic convective hazard forecasts [neural network probability forecasts (NNPFs)] for HRRRv4 initializations in 2021, using storm reports as ground truth. The NNPFs were compared to the skill of a smoothed updraft helicity (UH) baseline to quantify the benefit of the NNs. NNPF skill varied by initialization time and time of day but was all superior to the UH forecast. NNPFs valid at hours between 1800 and 0000 UTC were most skillful in aggregate, significantly exceeding the baseline forecast skill. Overnight NNPFs (i.e., valid 0600–1200 UTC) were least skillful, indicating a diurnal cycle in hazard predictability that was present across all HRRRv4 initializations. We explored the sensitivity of HRRRv4 NNPF skill to NN training choices. Including an additional year of 2021 HRRRv4 forecasts for training slightly improved skill for 2022 HRRRv4 NNPFs, while reducing the training dataset size by 40% using only forecasts with storm reports was not detrimental to forecast skill. Finally, NNs trained with 2018–20 HRRRv3 forecasts led to a reduction in NNPF skill when applied to 2021 HRRRv4 forecasts. In addition to documenting practical predictability challenges with convective hazard prediction, these findings reinforce the need for a consistent model configuration for optimal results when training NNs and provide best practices when constructing a training dataset with operational convection-allowing model forecasts.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7xw4q4g

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2024 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:58:10.553346

Metadata language

eng; USA