Worldwide maize and soybean yield response to environmental and management factors over the 20th and 21st centuries

A land process model, Integrated Science Assessment Model, is extended to simulate contemporary soybean and maize crop yields accurately and changes in yields over the period 1901-2100 driven by environmental factors (atmospheric CO2 level ([CO2]) and climate), and management factors (nitrogen input and irrigation). Over the twentieth century, each factor contributes to global yield increase; increasing nitrogen fertilization rates is the strongest driver for maize, and increasing [CO2] is the strongest for soybean. Over the 21st century, crop yields are projected under two future scenarios, RCP4.5-SSP2 and RCP8.5-SSP5; the warmer temperature drives yields lower, while rising [CO2] drives yields higher. The adverse warmer temperature effect of maize and soybean is offset by other drivers, particularly the increase in [CO2], and resultant changes in the phenological events due to climate change, particularly planting dates and harvesting times, by 2090s under both scenarios. Global yield for maize increases under RCP4.5-SSP2, which experiences continued growth in [CO2] and higher nitrogen input rates. For soybean, yield increases at a similar rate. However, in RCP8.5-SSP5, maize yield declines because of greater climate warming, extreme heat stress conditions, and weaker nitrogen fertilization than RCP4.5-SSP2, particularly in tropical and subtropical regions, suggesting that application of advanced technologies, and stronger management practices, in addition to climate change mitigation, may be needed to intensify crop production over this century. The model also projects spatial variations in yields; notably, the higher temperatures in tropical and subtropical regions limit photosynthesis rates and reduce light interception, resulting in lower yields, particularly for soybean under RCP8.5-SSP5.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lin, Tzu�Shun
Song, Yang
Lawrence, Peter
Kheshgi, Haroon S.
Jain, Atul K.
Publisher UCAR/NCAR - Library
Publication Date 2021-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:16:03.026228
Metadata Record Identifier edu.ucar.opensky::articles:24891
Metadata Language eng; USA
Suggested Citation Lin, Tzu�Shun, Song, Yang, Lawrence, Peter, Kheshgi, Haroon S., Jain, Atul K.. (2021). Worldwide maize and soybean yield response to environmental and management factors over the 20th and 21st centuries. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qc071s. Accessed 29 July 2025.

Harvest Source