Using the translation speed and vertical structure of gust fronts to infer buoyancy deficits within thunderstorm outflow

This study investigates whether the thermodynamics of supercell rear-flank outflow can be inferred from the propagation speed and vertical structure of the rear-flank gust front. To quantify the relationship between outflow thermodynamic deficit and gust front structure, CM1 is applied as a two-dimensional cold pool model to assess the vertical slope of cold pools of varying strength in different configurations of ambient shear. The model was run with both free-slip and semislip lower boundary conditions and the results were compared to observations of severe thunderstorm outflow captured by the Texas Tech University Ka-band mobile radars. Simulated cold pools in the free-slip model achieve the propagation speeds predicted by cold pool theory, while cold pool speeds in the semislip model propagate slower. Density current theory is applied to the observed cold pools and predicts the cold pool speed to within about 2 m s(-1). Both the free-slip and semislip model results reveal that, in the same sheared flow, the edge of a strong cold pool is less inclined than that of a weaker cold pool. Also, a cold pool in weak ambient shear has a steeper slope than the same cold pool in stronger ambient shear. Nonlinear regressions performed on data from both models capture the proper dependence of slope on buoyancy and shear, but the free-slip model does not predict observed slopes within acceptable error, and the semislip model overpredicts the cold pool slope for all observed cases, but with uncertainty due to shear estimation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hutson, Abby
Weiss, Christopher
Bryan, George H.
Publisher UCAR/NCAR - Library
Publication Date 2019-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:07:54.624970
Metadata Record Identifier edu.ucar.opensky::articles:22829
Metadata Language eng; USA
Suggested Citation Hutson, Abby, Weiss, Christopher, Bryan, George H.. (2019). Using the translation speed and vertical structure of gust fronts to infer buoyancy deficits within thunderstorm outflow. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d78d00cp. Accessed 29 July 2025.

Harvest Source