Turbulence structure and mixing in strongly stable boundary-layer flows over thermally heterogeneous surfaces

Direct numerical simulations (DNS) at bulk Reynolds number Re = 10(4) and bulk Richardson number Ri = 0.25 of plane Couette flow are performed with the results used to analyze the structure and mixing intensity in strongly stable boundary-layer flows. The Couette flow set-up is used as a proxy for a real-world stable boundary layer flow with surface thermal heterogeneity. Along the upper and lower walls, the temperature is either homogeneous or varies sinusoidally, but the horizontal-mean surface temperature is the same in all cases. Over homogeneous surfaces, the strong stratification always quenches turbulence resulting in linear velocity and temperature profiles. However, over a heterogeneous surface turbulence survives. Molecular diffusion and turbulence contribute to down-gradient momentum transfer. The total (diffusive plus turbulent) heat flux is directed downward, but its turbulent contribution is positive, i.e., up the mean temperature gradient. Analysis of covariances of velocity and temperature, their skewness, and the flow structure suggests that counter-gradient heat transport is due to quasi-organized cell-like vortical motions generated by surface thermal heterogeneity. These motions transfer heat upwards similar to their counterparts in highly convective boundary layers. Thus, the flow over heterogeneous surface features local convective instabilities and upward eddy heat transport, although the overall stratification remains stable with downward mean heat transfer. The DNS results are compared to the results from large-eddy simulations of weakly stable boundary layers (Mironov and Sullivan in J Atmos Sci 73:449-464, 2016). The DNS findings corroborate the key role of temperature variance in setting the structure and transport properties of stably stratified flow over heterogeneous surfaces, and the importance of third-order transport of the temperature variance.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mironov, Dmitrii V.
Sullivan, Peter P.
Publisher UCAR/NCAR - Library
Publication Date 2023-01-20T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:17.383526
Metadata Record Identifier edu.ucar.opensky::articles:26151
Metadata Language eng; USA
Suggested Citation Mironov, Dmitrii V., Sullivan, Peter P.. (2023). Turbulence structure and mixing in strongly stable boundary-layer flows over thermally heterogeneous surfaces. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qr521d. Accessed 25 July 2025.

Harvest Source