Toward reliable ensemble Kalman filter estimates of CO₂ fluxes

The use of ensemble filters for estimating sources and sinks of carbon dioxide (CO₂) is becoming increasingly common, because they provide a relatively computationally efficient framework for assimilating high-density observations of CO₂. Their applicability for estimating fluxes at high-resolutions and the equivalence of their estimates to those from more traditional "batch" inversion methods have not been demonstrated, however. In this study, we introduce a Geostatistical Ensemble Square Root Filter (GEnSRF) as a prototypical filter and examine its performance using a synthetic data study over North America at a high spatial (1° × 1°) and temporal (3-hourly) resolution. The ensemble performance, both in terms of estimates and associated uncertainties, is benchmarked against a batch inverse modeling setup in order to isolate and quantify the degradation in the estimates due to the numerical approximations and parameter choices in the ensemble filter. The examined case studies demonstrate that adopting state-of-the-art covariance inflation and localization schemes is a necessary but not sufficient condition for ensuring good filter performance, as defined by its ability to yield reliable flux estimates and uncertainties across a range of resolutions. Observational density is found to be another critical factor for stabilizing the ensemble performance, which is attributed to the lack of a dynamical model for evolving the ensemble between assimilation times. This and other results point to key differences between the applicability of ensemble approaches to carbon cycle science relative to its use in meteorological applications where these tools were originally developed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chatterjee, Abhishek
Michalak, Anna
Anderson, Jeffrey
Mueller, K.
Yadav, V.
Publisher UCAR/NCAR - Library
Publication Date 2012-11-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:23:04.988068
Metadata Record Identifier edu.ucar.opensky::articles:13007
Metadata Language eng; USA
Suggested Citation Chatterjee, Abhishek, Michalak, Anna, Anderson, Jeffrey, Mueller, K., Yadav, V.. (2012). Toward reliable ensemble Kalman filter estimates of CO₂ fluxes. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d73x87jg. Accessed 22 July 2025.

Harvest Source