Toward multiscale simulation of moist flows with soundproof equations

This paper discusses the incorporation of phase changes of the water substance that accompany moist atmospheric flows into the all-scale atmospheric model based on soundproof equations. A specific issue involves developing a theoretical basis and practical implementation to include pressure perturbations associated with atmospheric circulations, from small scale to global, into representations of moist thermodynamics. In small-scale modeling using soundproof equations, pressure perturbations are obtained from the elliptic pressure solver and are typically excluded from the moist thermodynamics. This paper argues that in larger-scale flows, at least the hydrostatic component of the pressure perturbation needs to be included because pressure variation in synoptic weather systems may affect moist thermodynamics in a way comparable to the temperature variations. As an illustration, two idealized test problems are considered: the small-scale moist thermal rising in a stratified environment and the moist mesoscale flow over idealized topography. The paper compares numerical solutions obtained with a fully compressible acoustic mode–resolving model and with two versions of the anelastic model, either including or excluding anelastic pressure perturbations in moist thermodynamics. The two versions of the anelastic model are referred to as the generalized and standard anelastic. In agreement with the scaling arguments, only negligible differences between anelastic and compressible solutions are simulated. Incorporation of the anelastic pressure perturbations into moist thermodynamics paves the way for future studies where larger-scale moist dynamics will be considered.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kurowski, Marcin
Grabowski, Wojciech
Smolarkiewicz, Piotr
Publisher UCAR/NCAR - Library
Publication Date 2013-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:48:04.714718
Metadata Record Identifier edu.ucar.opensky::articles:13101
Metadata Language eng; USA
Suggested Citation Kurowski, Marcin, Grabowski, Wojciech, Smolarkiewicz, Piotr. (2013). Toward multiscale simulation of moist flows with soundproof equations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7zs2xfh. Accessed 27 July 2025.

Harvest Source