The tropical marine boundary layer under a deep convection system: A large-eddy simulation study

The tropical marine PBL under the influence of a deep convection system is investigated using a largedomain LES that resolves a wide range of scales, from mesoscale cloud clusters down to energy-containing turbulence. The simulated PBL is dominated by both turbulence and cloud-induced cold-pools. The variance of vertical velocity in the PBL resides mostly in the turbulence scales while that of water vapor mixing ratio resides mostly at the cold-pool scales; however, both turbulence and cold-pool scales contribute about equally to their covariance. The broad scale range of the LES flow field is decomposed into the filtered (i.e., cloud system) and the subfilter (i.e., small convection and turbulence) components using a Gaussian filter with various filter widths. Such decomposed flow fields are used to retrieve information of spatial distribution of the subfilter-scale fluxes and their relationship to the filtered field. This information is then used to evaluate the performance of an eddy-viscosity model commonly used in cloud-resolving models. The subfilter-scale fluxes computed from the eddy-viscosity model correlate reasonably with those retrieved from the LES in the lower cloud layer but not in the PBL; the correlation coefficients between the modeled and the retrieved fluxes are about 0.5 in the lower cloud layer but smaller than 0.2 in the PBL.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 Author(s). This work is licensed under a Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Moeng, Chin-Hoh
LeMone, Margaret
Khairoutdinov, Marat
Krueger, Steve
Bogenschutz, Peter
Randall, David
Publisher UCAR/NCAR - Library
Publication Date 2009-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:26:28.884517
Metadata Record Identifier edu.ucar.opensky::articles:17053
Metadata Language eng; USA
Suggested Citation Moeng, Chin-Hoh, LeMone, Margaret, Khairoutdinov, Marat, Krueger, Steve, Bogenschutz, Peter, Randall, David. (2009). The tropical marine boundary layer under a deep convection system: A large-eddy simulation study. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7319x57. Accessed 24 July 2025.

Harvest Source