The long‐term trends of nocturnal mesopause temperature and altitude revealed by Na lidar observations between 1990 and 2018 at mid‐latitude

The mesopause, a boundary between mesosphere and thermosphere with the coldest atmospheric temperature, is formed mainly by the combining effects of radiative cooling of CO2, and the vertical adiabatic flow in the upper atmosphere. A continuous multidecade (1990‐2018) nocturnal temperature database of an advanced Na lidar, obtained at Fort Collins, CO (41°N, 105°W), and at Logan, UT (42°N, 112°W), provides an unprecedented opportunity to study the long‐term variations of this important atmospheric boundary. In this study, we categorize the lidar‐observed mesopause into two categories: the “high mesopause” (HM) above 97 km during nonsummer months, mainly formed through the radiative cooling, and the “low mesopause” (LM) below 92 km during nonwinter months, generated mostly by the adiabatic cooling. These lidar observations reveal a cooling trend of more than 2 K/decade in absolute mesopause temperature since 1990, along with a decreasing trend in mesopause height: The HM is moving downward at a speed of ~ 450 ± 90 m/decade, while the LM has a slower downward trend of ~ 130 ± 160 m/decade. However, since 2000, while the height trend (‐ 470 ± 160 m/decade for the HM and 150 ± 290 m/decade for the LM) is consistent, the temperature trend becomes statistically insignificant (‐ 0.2 ± 0.7 K/decade and ‐1 ± 0.9 K/decade for the HM and the LM, respectively). A long‐term study by Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM‐X) also indicated the similar mesopause changes, mostly caused by stratosphere‐lower mesosphere cooling and contraction.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : USU Na Lidar Data

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Yuan, Tao
Solomon, Stanley C.
She, C.‐Y.
Krueger, D.A.
Liu, Hanli
Publisher UCAR/NCAR - Library
Publication Date 2019-05-17T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:11:03.505899
Metadata Record Identifier edu.ucar.opensky::articles:22715
Metadata Language eng; USA
Suggested Citation Yuan, Tao, Solomon, Stanley C., She, C.‐Y., Krueger, D.A., Liu, Hanli. (2019). The long‐term trends of nocturnal mesopause temperature and altitude revealed by Na lidar observations between 1990 and 2018 at mid‐latitude. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7zc83wj. Accessed 13 July 2025.

Harvest Source