The impact of GPS RO data on the prediction of tropical cyclogenesis using a nonlocal observation operator: An initial assessment

In this study, the impact of global positioning system (GPS) radio occultation (RO) data on the prediction of the genesis of 10 tropical cyclones over the western North Pacific Ocean is assessed. With the use of a nonlocal excess phase observation operator in cycling data assimilation, the probability of detection for tropical cyclogenesis is increased from 30% to 70% for the cases considered, all of which developed into typhoons. However, the probability of detection is only increased to 40% when a local observation operator is used, indicating that the observation operator can significantly influence the performance of RO data assimilation in capturing tropical cyclogenesis. A nonlocal excess phase operator, which considers the atmospheric horizontal gradients by integrating the refractivity along a ray path, gives superior performance over the local observation operator. Additional sensitivity experiments on 3 of the 10 typhoon cases show that the RO data in the vicinity of the incipient cyclones (within 500 km of the cyclone center) are most critical to successful cyclogenesis prediction. This reflects the fact that having good RO observations at the right time and place is critical for RO to have beneficial impacts on tropical cyclogenesis. Further analyses for Typhoon Nuri (2008) show that assimilation of RO data using the nonlocal operator leads to moistening of the lower and middle troposphere, organized convection, robust grid-scale vertical motions, and the development of midlevel relative vorticity, all of which are favorable for tropical cyclogenesis.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chen, Shu-Ya
Kuo, Ying-Hwa
Huang, Ching-Yuang
Publisher UCAR/NCAR - Library
Publication Date 2020-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:29:46.697295
Metadata Record Identifier edu.ucar.opensky::articles:24105
Metadata Language eng; USA
Suggested Citation Chen, Shu-Ya, Kuo, Ying-Hwa, Huang, Ching-Yuang. (2020). The impact of GPS RO data on the prediction of tropical cyclogenesis using a nonlocal observation operator: An initial assessment. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d71n84hd. Accessed 29 July 2025.

Harvest Source