The character and changing frequency of extreme California fire weather

Five of California's 10 largest wildfires occurred in 2020, with the largest complex exceeding the previous largest by more than 100%. The year follows a decade containing extraordinary fire activity. Previous trend investigations focused on changes in human activities and atmospheric thermodynamics, while the impacts of changing atmospheric dynamics are largely unknown. Here, we identify weather types (WTs) associated with historically large daily burned areas in eight Californian regions. These WTs characterize dominant fire weather regimes varying in fire behavior types (plume-driven vs. wind-driven fires) and seasonality. Most of the strongly large-scale forced WTs such as Santa Ana and Diablo events increased in frequency during the 20th century particularly in the San Diego and Bay Area regions. These changes are likely not anthropogenically caused and the frequency of such events is projected to decrease under continuing climate change. However, significant future increases are found for WTs associated with thermal-low-pressure systems along the California coast and in the Sierra west region. These increases in southern California are mainly due to increasing greenhouse-gas forcing and arise from the larger ocean-land temperature gradient while aerosol forcing changes are driving most of the increased frequency in central and northern California due to a reduction of relative humidity over land and a strengthening of low-pressure anomalies over the coast. These WT frequency changes could permit more weather favorable for large fire growth in summer and less in fall, further enhancing the risk of catastrophic fires due to hotter and drier summers in future climates.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Prein, Andreas F.
Coen, Janice
Jaye, Abby
Publisher UCAR/NCAR - Library
Publication Date 2022-05-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:37:21.347838
Metadata Record Identifier edu.ucar.opensky::articles:25370
Metadata Language eng; USA
Suggested Citation Prein, Andreas F., Coen, Janice, Jaye, Abby. (2022). The character and changing frequency of extreme California fire weather. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7w38114. Accessed 27 July 2025.

Harvest Source