Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP)

Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO₂ emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols under present-day conditions is a general decrease in ozone concentrations. Here we present the results from two general circulation models and two coupled chemistry-climate models within the experiments G3 and G4 of the Geoengineering Model Intercomparison Project. On average, the models simulate in G4 an increase in sulfate aerosol surface area density similar to conditions a year after the Mount Pinatubo eruption and a decrease in globally averaged ozone by 1.1-2.1 DU (Dobson unit, 1 DU = 0.001 atm cm) during the central decade of the experiment (2040-2049). Enhanced heterogeneous chemistry on sulfate aerosols leads to an ozone increase in low and middle latitudes, whereas enhanced heterogeneous reactions in polar regions and increased tropical upwelling lead to a reduction of stratospheric ozone. The increase in UV-B radiation at the surface due to ozone depletion is offset by the screening due to the aerosols in the tropics and midlatitudes, while in polar regions the UV-B radiation is increased by 5% on average, with 12% peak increases during springtime. The contribution of ozone changes to the tropopause radiative forcing during 2040-2049 is found to be less than −0.1 W m−2. After 2050, because of decreasing ClOx concentrations, the suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pitari, Giovanni
Aquila, Valentina
Kravitz, Ben
Robock, Alan
Watanabe, Shingo
Cionni, Irene
De Luca, Natalia
Di Genova, Glauco
Mancini, Eva
Tilmes, Simone
Publisher UCAR/NCAR - Library
Publication Date 2014-03-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:45:28.011889
Metadata Record Identifier edu.ucar.opensky::articles:13377
Metadata Language eng; USA
Suggested Citation Pitari, Giovanni, Aquila, Valentina, Kravitz, Ben, Robock, Alan, Watanabe, Shingo, Cionni, Irene, De Luca, Natalia, Di Genova, Glauco, Mancini, Eva, Tilmes, Simone. (2014). Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79p32kd. Accessed 27 July 2025.

Harvest Source