Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies

Chlorofluorocarbons (CFCs) play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their stratospheric loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer–tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11) and CF2Cl2 (CFC-12). We present estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 years for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the HIgh Resolution Dynamics Limb Sounder (HIRDLS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We found a CFC-11/CFC-12 lifetime ratio of 0.47±0.08 and a CFC-12 lifetime of 112(96-133) years for ACE-FTS, a ratio of 0.46±0.07 and a lifetime of 113(97-134) years for HIRDLS, and a ratio of 0.46±0.08 and a lifetime of 114(98-136) years for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.46±0.04 and the CFC-12 lifetime estimate is 113(103-124) years. These results agree with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC) reassessment, which recommends lifetimes of 52(43-67) years and 102(88-122) years, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled model we found a CFC-11/CFC-12 lifetime ratio of 0.48±0.07 and a CFC-12 lifetime of 110(95-129) years, based on a 10-year perpetual run. Closely reproducing the satellite observations, the new model system will likely become a useful tool to assess the impact of advective transport, mixing, and photochemistry as well as climatological variability on the stratospheric lifetimes of long-lived tracers.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hoffmann, L.
Hoppe, C.
Muller, R.
Dutton, G.
Gille, John
Griessbach, S.
Jones, A.
Meyer, C.
Spang, R.
Volk, C.
Walker, K.
Publisher UCAR/NCAR - Library
Publication Date 2014-11-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:10:29.433269
Metadata Record Identifier edu.ucar.opensky::articles:14419
Metadata Language eng; USA
Suggested Citation Hoffmann, L., Hoppe, C., Muller, R., Dutton, G., Gille, John, Griessbach, S., Jones, A., Meyer, C., Spang, R., Volk, C., Walker, K.. (2014). Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7028sjj. Accessed 29 July 2025.

Harvest Source