Statistical tests of Taylor's Hypothesis: An application to precipitation fields

The Taylor Hypothesis (TH) as applied to rainfall is a proposition about the space–time covariance structure of the rainfall field. Specifically, it supposes that if a spatiotemporal precipitation field with a stationary covariance Cov(r, τ) in both space r and time τ moves with a constant velocity v, then the temporal covariance at time lag τ is equal to the spatial covariance at space lag r = vτ that is, Cov(0, τ) = Cov(vτ, 0). Qualitatively this means that the field evolves slowly in time relative to the advective time scale, which is often referred to as the frozen field hypothesis. Of specific interest is whether there is a cutoff or decorrelation time scale for which the TH holds for a given mean flow velocity v. In this study, the validity of the TH is tested for precipitation fields using high-resolution gridded Next Generation Weather Radar (NEXRAD) reflectivity data produced by the WSI Corporation by employing two different statistical approaches. The first method is based on rigorous hypothesis testing, while the second is based on a simple correlation analysis, which neglects possible dependencies between the correlation estimates. Radar reflectivity values are used from the southeastern United States with an approximate horizontal resolution of 4 km × 4 km and a temporal resolution of 15 min. During the 4-day period from 2 to 5 May 2002, substantial precipitation occurs in the region of interest, and the motion of the precipitation systems is approximately uniform. The results of both statistical methods suggest that the TH might hold for the shortest space and time scales resolved by the data (4 km and 15 min) but that it does not hold for longer periods or larger spatial scales. Also, the simple correlation analysis tends to overestimate the statistical significance through failing to account for correlations between the covariance estimates.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Li, Bo
Murthi, Aditya
Bowman, Kenneth
North, Gerald
Genton, Marc
Sherman, Michael
Publisher UCAR/NCAR - Library
Publication Date 2009-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:20:49.706323
Metadata Record Identifier edu.ucar.opensky::articles:17027
Metadata Language eng; USA
Suggested Citation Li, Bo, Murthi, Aditya, Bowman, Kenneth, North, Gerald, Genton, Marc, Sherman, Michael. (2009). Statistical tests of Taylor's Hypothesis: An application to precipitation fields. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7fj2j1h. Accessed 21 July 2025.

Harvest Source