Simulations of subtropical cyclones in a baroclinic channel model

The present study considers a variety of cyclone developments that occur in an idealized, baroclinic channel model featuring full condensation heating effects over an ocean with prescribed sea-surface temperature variation. The geostrophic basic state jet is specified by the tropopause shape, and horizontal shear is included by specifying the meridional variation of zonal wind on the lower boundary. The horizontal shear induces anticyclonic wave breaking of baroclinic waves. Normal mode perturbations are computed using a fake-dry version of the model, but integrated forward using full physics. Low-latitude moist convection is particularly strong in simulations with strong surface easterlies that destabilize the troposphere through water vapor fluxes from the ocean surface. Deep convection produces a locally elevated dynamic tropopause and an associated anticyclone. This modified zonal flow supports moist baroclinic instability. The resulting cyclones, identified as subtropical cyclones, occur in deep westerly vertical wind shear but are nearly devoid of lower-tropospheric baroclinicity initially. These systems are distinguished from baroclinically dominated secondary cyclones that also form at relatively low latitudes in the simulations. For weak jets and strong subtropical surface easterlies, subtropical cyclone development dominates development on the midlatitude jet. For strong westerly jets or weak horizontal shear, the situation is reversed and the midlatitude baroclinic wave can help or hinder the ultimate intensification of the subtropical cyclone. The similarity of this cross-latitude influence to the extratropical transition of tropical cyclones is noted.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Davis, Christopher
Publisher UCAR/NCAR - Library
Publication Date 2010-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:49:07.978520
Metadata Record Identifier edu.ucar.opensky::articles:10284
Metadata Language eng; USA
Suggested Citation Davis, Christopher. (2010). Simulations of subtropical cyclones in a baroclinic channel model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7m32w6z. Accessed 24 July 2025.

Harvest Source