Simulation of the 1976/1977 climate transition over the North Pacific: Sensitivity to tropical forcing

This study examines the contribution of tropical sea surface temperature (SST) forcing to the 1976/77 climate transition of the winter atmospheric circulation over the North Pacific using a combined observational and modeling approach. The National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 3 (CAM3) simulates approximately 75% of the observed 4-hPa deepening of the wintertime Aleutian low from 1950-76 to 1977-2000 when forced with the observed evolution of tropical SSTs in a 10-member ensemble average. This response is driven by precipitation increases over the western half of the equatorial Pacific Ocean. In contrast, the NCAR Community Climate Model version 3 (CCM3), the predecessor to CAM3, simulates no significant change in the strength of the Aleutian low when forced with the same tropical SSTs in a 12-member ensemble average. The lack of response in CCM3 is traced to an erroneously large precipitation increase over the tropical Indian Ocean whose dynamical impact is to weaken the Aleutian low; this, when combined with the response to rainfall increases over the western and central equatorial Pacific, results in near-zero net change in the strength of the Aleutian low. The observed distribution of tropical precipitation anomalies associated with the 1976/77 transition, estimated from a combination of direct measurements at land stations and indirect information from surface marine cloudiness and wind divergence fields, supports the models' simulated rainfall increases over the western half of the Pacific but not the magnitude of CCM3's rainfall increase over the Indian Ocean.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Deser, Clara
Phillips, Adam
Publisher UCAR/NCAR - Library
Publication Date 2006-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T17:04:13.654940
Metadata Record Identifier edu.ucar.opensky::articles:7352
Metadata Language eng; USA
Suggested Citation Deser, Clara, Phillips, Adam. (2006). Simulation of the 1976/1977 climate transition over the North Pacific: Sensitivity to tropical forcing. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7g1615r. Accessed 31 July 2025.

Harvest Source