Secondary ice production by fragmentation of freezing drops: Formulation and theory

A numerical formulation is provided for secondary ice production during fragmentation of freezing raindrops or drizzle. This is obtained by pooling laboratory observations from published studies and considering the physics of collisions. There are two modes of the scheme: fragmentation during spherical drop freezing (mode 1) and during collisions of supercooled raindrops with more massive ice (mode 2). The empirical scheme is for atmospheric models. Microphysical simulations with a parcel model of fast ascent (8 m s(-1)) between -10 degrees and -20 degrees C are validated against aircraft observations of tropical maritime deep convection. Ice enhancement by an order of magnitude is predicted from inclusion of raindrop-freezing fragmentation, as observed. The Hallett-Mossop (HM) process was active too. Both secondary ice mechanisms (HM and raindrop freezing) are accelerated by a positive feedback involving collisional raindrop freezing. An energy-based theory is proposed explaining the laboratory observations of mode 1, both of approximate proportionality between drop size and fragment numbers and of their thermal peak. To illustrate the behavior of the scheme in both modes, the glaciation of idealized monodisperse populations of drops is elucidated with an analytical zero-dimensional (0D) theory treating the freezing in drop-ice collisions by a positive feedback of fragmentation. When drops are too few or too small (<<1 mm), especially at temperatures far from -15 degrees C (mode 1), there is little raindrop-freezing fragmentation on realistic time scales of natural clouds, but otherwise, high ice enhancement (IE) ratios of up to 100-1000 are possible. Theoretical formulas for the glaciation time of such drop populations, and their maximum and initial growth rates of IE ratio, are proposed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Phillips, Vaughan T. J.
Patade, Sachin
Gutierrez, Julie
Bansemer, Aaron
Publisher UCAR/NCAR - Library
Publication Date 2018-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:18:53.959465
Metadata Record Identifier edu.ucar.opensky::articles:21900
Metadata Language eng; USA
Suggested Citation Phillips, Vaughan T. J., Patade, Sachin, Gutierrez, Julie, Bansemer, Aaron. (2018). Secondary ice production by fragmentation of freezing drops: Formulation and theory. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d77s7rnh. Accessed 26 July 2025.

Harvest Source