Seasonal prediction of winter extreme precipitation over Canada by support vector regression

For forecasting the maximum 5-day accumulated precipitation over the winter season at lead times of 3, 6, 9 and 12 months over Canada from 1950 to 2007, two nonlinear and two linear regression models were used, where the models were support vector regression (SVR) (nonlinear and linear versions), nonlinear Bayesian neural network (BNN) and multiple linear regression (MLR). The 118 stations were grouped into six geographic regions by K-means clustering. For each region, the leading principal components of the winter maximum 5-d accumulated precipitation anomalies were the predictands. Potential predictors included quasi-global sea surface temperature anomalies and 500 hPa geopotential height anomalies over the Northern Hemisphere, as well as six climate indices (the Nino-3.4 region sea surface temperature, the North Atlantic Oscillation, the Pacific-North American teleconnection, the Pacific Decadal Oscillation, the Scandinavia pattern, and the East Atlantic pattern). The results showed that in general the two robust SVR models tended to have better forecast skills than the two non-robust models (MLR and BNN), and the nonlinear SVR model tended to forecast slightly better than the linear SVR model. Among the six regions, the Prairies region displayed the highest forecast skills, and the Arctic region the second highest. The strongest nonlinearity was manifested over the Prairies and the weakest nonlinearity over the Arctic.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zeng, Zhen
Hsieh, W. W.
Shabbar, A.
Burrows, W. R.
Publisher UCAR/NCAR - Library
Publication Date 2011-01-06T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:34:44.705167
Metadata Record Identifier edu.ucar.opensky::articles:25200
Metadata Language eng; USA
Suggested Citation Zeng, Zhen, Hsieh, W. W., Shabbar, A., Burrows, W. R.. (2011). Seasonal prediction of winter extreme precipitation over Canada by support vector regression. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7474fgz. Accessed 18 July 2025.

Harvest Source