Quantifying damage contributions from convective and stratiform weather types: How well do precipitation and discharge data indicate the risk?

Convective precipitation is intensifying in many regions, but potential implications of shifts in precipitation types on impacts have not been quantified. Furthermore, risk assessments often focus on rare extremes, but also more frequent hydro-meteorological events burden private and public budgets. Here synoptic, hydrological, meteorological, and socio-economic data are merged to analyse 25 years of damage claims in 480 Austrian municipalities. Exceedance probabilities of discharge and precipitation associated with damage reports are calculated and compared for convective and stratiform weather patterns. During April to November, 60% of claims are reported under convective conditions. Irrespective of the weather type, most of the accumulated cost links to minor hazard levels, not only indicating that frequent events are a highly relevant expense factor, but also pointing to deficiencies in observational data. High uncertainty in damage costs attributable to extreme events demonstrates the questionable reliability of calculating low-frequency event return levels. Significant differences exist among weather types. Stratiform weather types are up to 10 times more often associated with damaging extreme discharge or precipitation, while convective weather shows the highest nuisance level contributions. The results show that changes in convective precipitation are pertinent to risk management as convective weather types have contributed significantly to damage in the past.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Schroeer, Katharina
Tye, Mari R.
Publisher UCAR/NCAR - Library
Publication Date 2019-12-02T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:09:35.140159
Metadata Record Identifier edu.ucar.opensky::articles:22959
Metadata Language eng; USA
Suggested Citation Schroeer, Katharina, Tye, Mari R.. (2019). Quantifying damage contributions from convective and stratiform weather types: How well do precipitation and discharge data indicate the risk?. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7mg7sn7. Accessed 17 July 2025.

Harvest Source