Predicting Ice Shape Evolution in a Bulk Microphysics Model

A novel bulk microphysics scheme that predicts the evolution of ice properties, including aspect ratio (shape), mass, number, size, and density is described, tested, and demonstrated. The scheme is named the Ice-Spheroids Habit Model with Aspect-Ratio Evolution (ISHMAEL). Ice is modeled as spheroids and is nucleated as one of two species depending on nucleation temperature. Microphysical process rates determine how shape and other ice properties evolve. A third aggregate species is also employed, diversifying ice properties in the model. Tests of ice shape evolution during vapor growth and riming are verified against wind tunnel data, revealing that the model captures habit-dependent riming and its effect on fall speed. Lagrangian parcel studies demonstrate that the bulk model captures ice property evolution during riming and melting compared with a bin model. Finally, the capabilities of ISHMAEL are shown in a 2D kinematic framework with a simple updraft. A direct result of predicting ice shape evolution is that various states of ice from unrimed to lightly rimed to densely rimed can be modeled without converting ice mass between predefined ice categories (e.g., snow and graupel). This leads to a different spatial precipitation distribution compared with the traditional method of separating snow and graupel and converting between the two categories, because ice in ISHMAEL sorts in physical space based on the amount of rime, which controls the thickness and therefore fall speed. Predicting these various states of rimed ice leads to a reduction in vapor growth rate and an increase in riming rate in a simple updraft compared with the traditional approach.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jensen, Anders A.
Harrington, Jerry Y.
Morrison, Hugh
Milbrandt, Jason A.
Publisher UCAR/NCAR - Library
Publication Date 2017-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:13:50.308809
Metadata Record Identifier edu.ucar.opensky::articles:19856
Metadata Language eng; USA
Suggested Citation Jensen, Anders A., Harrington, Jerry Y., Morrison, Hugh, Milbrandt, Jason A.. (2017). Predicting Ice Shape Evolution in a Bulk Microphysics Model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7rf5x9j. Accessed 21 July 2025.

Harvest Source