Predicting euphotic-depth-integrated chlorophyll-a from discrete-depth and satellite-observable chlorophyll-a off central California

Predicting water column integrated phytoplankton biomass from near-surface measurements has been an important effort in marine ecological research, particularly since the advent of satellite remote sensing of ocean color. Quantitative relationships between chlorophyll-a concentrations (Chl-a) at the surface and its depth-integrated magnitude have thus far only been developed for open-ocean waters. Here we develop and test for the first time an extension of open-ocean relationships into ocean-margin waters, specifically the highly productive and variable eastern boundary upwelling ecosystem off the central California coast. This region was chosen because of the unique availability of a 30-year record of ship-based Chl-a profiles measured using consistent methods. The extended relationship allows accurate prediction of integrated biomass from surface measurements. Further, we develop a new set of relationships for predicting the depth-integrated Chl-a from Chl-a measured over a range of discrete depths (i.e., as measured by fluorometers on moorings). The newly developed relationships are tested against 15,000 fluorometric Chl-a profiles obtained from an autonomous underwater vehicle. Surprisingly, the relationship between surface Chl-a and depth-integrated Chl-a holds for profiles with high concentrations of Chl-a in persistent subsurface thin phytoplankton layers (layers <3 m thick and located below the first optical depth). The results have implications for monitoring of algal blooms and for quantifying ocean primary productivity from satellite observations of ocean color.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Frolov, Sergey
Ryan, J.
Chavez, F.
Publisher UCAR/NCAR - Library
Publication Date 2012-05-26T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:10:57.249372
Metadata Record Identifier edu.ucar.opensky::articles:11830
Metadata Language eng; USA
Suggested Citation Frolov, Sergey, Ryan, J., Chavez, F.. (2012). Predicting euphotic-depth-integrated chlorophyll-a from discrete-depth and satellite-observable chlorophyll-a off central California. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7mk6dj0. Accessed 29 July 2025.

Harvest Source