Observations of infrared sea surface temperature and air–sea interaction in Hurricane Edouard (2014) using GPS dropsondes

This study highlights infrared sensor technology incorporated into the global positioning system (GPS) dropsonde platforms to obtain sea surface temperature (SST) measurements. This modified sonde (IRsonde) is used to improve understanding of air-sea interaction in tropical cyclones (TCs). As part of the Sandy Supplemental Program, IRsondes were constructed and then deployed during the 2014 hurricane season. Comparisons between SSTs measured by collocated IRsondes and ocean expendables show good agreement, especially in regions with no rain contamination. Surface fluxes were estimated using measurements from the IRsondes and AXBTs via a bulk method that requires measurements of SST and near-surface (10 m) wind speed, temperature, and humidity. The evolution of surface fluxes and their role in the intensification and weakening of Hurricane Edouard (2014) are discussed in the context of boundary layer recovery. The study's result emphasizes the important role of surface flux-induced boundary layer recovery in regulating the low-level thermodynamic structure that is tied to the asymmetry of convection and TC intensity change.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhang, Jun A.
Cione, Joseph J.
Kalina, Evan A.
Uhlhorn, Eric W.
Hock, Terry
Smith, Jeffrey A.
Publisher UCAR/NCAR - Library
Publication Date 2017-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:25:30.609781
Metadata Record Identifier edu.ucar.opensky::articles:20875
Metadata Language eng; USA
Suggested Citation Zhang, Jun A., Cione, Joseph J., Kalina, Evan A., Uhlhorn, Eric W., Hock, Terry, Smith, Jeffrey A.. (2017). Observations of infrared sea surface temperature and air–sea interaction in Hurricane Edouard (2014) using GPS dropsondes. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qj7kq8. Accessed 28 July 2025.

Harvest Source