Novel measures for summarizing high-resolution forecast performance

In ascertaining the performance of a high-resolution gridded forecast against an analysis, called the verification set, on the same grid, care must be taken to account for the over-accumulation of small-scale errors and double penalties. It is also useful to consider both location errors and intensity errors. In the last 2 decades, many new methods have been proposed for analyzing these kinds of verification sets. Many of these new methods involve fairly complicated strategies that do not naturally summarize forecast performance succinctly. This paper presents two new spatial-alignment performance measures, G and Gβ. The former is applied without any requirement for user decisions, while the latter has a single user-chosen parameter, β, that takes on a value from zero to one, where one corresponds to a perfect match and zero corresponds to the user's notion of a worst case. Unlike any previously proposed distance-based measure, both handle the often-encountered case in which all values in one or both of the verification set are zero. Moreover, its value is consistent if only a few grid points are nonzero.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gilleland, Eric
Publisher UCAR/NCAR - Library
Publication Date 2021-02-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:12:37.723241
Metadata Record Identifier edu.ucar.opensky::articles:24036
Metadata Language eng; USA
Suggested Citation Gilleland, Eric. (2021). Novel measures for summarizing high-resolution forecast performance. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7n019ws. Accessed 18 July 2025.

Harvest Source