Microphysics of maritime tropical convective updrafts at temperatures from -20° to -60°

Anvils produced by vigorous tropical convection contribute significantly to the earth's radiation balance, and their radiative properties depend largely on the concentrations and sizes of the ice particles that form them. These microphysical properties are determined to an important extent by the fate of supercooled droplets, with diameters from 3 to about 20 microns, lofted in the updrafts. The present study addresses the question of whether most or all of these droplets are captured by ice particles or if they remain uncollected until arriving at the –38°C level where they freeze by homogeneous nucleation, producing high concentrations of very small ice particles that can persist and dominate the albedo. Aircraft data of ice particle and water droplet size distributions from seven field campaigns at latitudes from 25°N to 11°S are combined with a numerical model in order to examine the conditions under which significant numbers of supercooled water droplets can be lofted to the homogeneous nucleation level. Microphysical data were collected in pristine to heavily dust-laden maritime environments, isolated convective updrafts, and tropical cyclone updrafts with peak velocities reaching 25 m s⁻¹. The cumulative horizontal distance of in-cloud sampling at temperatures of –20°C and below exceeds 50 000 km. Analysis reveals that most of the condensate in these convective updrafts is removed before reaching the –20°C level, and the total condensate continues to diminish linearly upward. The amount of condensate in small (<50 μm in diameter) droplets and ice particles, however, increases upward, suggesting new droplet activation with an appreciable radiative impact. Conditions promoting the generation of large numbers of small ice particles through homogeneous ice nucleation include high concentrations of cloud condensation nuclei (sometimes from dust), removal of most of the water substance between cloud base and the –38°C levels, and acceleration of the updrafts at mid- and upper levels such that velocities exceed 5–7 m s⁻¹.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Heymsfield, Andrew J.
Bansemer, Aaron R.
Heymsfield, G.
Fierro, A.
Publisher UCAR/NCAR - Library
Publication Date 2009-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:28:36.048985
Metadata Record Identifier edu.ucar.opensky::articles:17080
Metadata Language eng; USA
Suggested Citation Heymsfield, Andrew J., Bansemer, Aaron R., Heymsfield, G., Fierro, A.. (2009). Microphysics of maritime tropical convective updrafts at temperatures from -20° to -60°. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7kw5h9h. Accessed 12 August 2025.

Harvest Source