Mesospheric nitric oxide transport in WACCM

Energetic particle precipitation (EPP) causes ionization of the main constituents of the Earth's atmosphere which leads to the production of nitric oxide (NO) throughout the polar mesosphere and lower thermosphere (MLT). Due to the long lifetime of NO during winter, it can also be transported deeper into the atmosphere by the mesospheric residual circulation (the indirect EEP effect). This study investigates the mesospheric indirect NO response to EEP using Whole Atmosphere Community Climate Model (WACCM) version 6. In comparison to observations from the instrument Solar Occultation For Ice Experiment (SOFIE) on the AIM (Aeronomy of Ice in the Mesosphere) satellite, a wintertime underestimation is found in the modeled mesospheric NO amount. WACCM's temperature profile is found to be vertically shifted compared to observations by SOFIE and by The Sounding of the Atmosphere using Broadband Emission Radiometry instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite (SABER). The discrepancies in NO are therefore attributed to the model's ability to simulate the dynamics responsible for the indirect EEP effect. The drivers of this transport are investigated by sensitivity runs of WACCM's gravity wave forcing. Changing the amplitude of the non-orographic gravity waves and the Prandtl number improves the modeled vertical distribution of NO and temperature in the MLT region.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Smith‐Johnsen, Christine
Marsh, Daniel
Smith, Anne K.
Tyssøy, Hilde Nesse
Maliniemi, Ville
Publisher UCAR/NCAR - Library
Publication Date 2022-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:17:18.280485
Metadata Record Identifier edu.ucar.opensky::articles:25279
Metadata Language eng; USA
Suggested Citation Smith‐Johnsen, Christine, Marsh, Daniel, Smith, Anne K., Tyssøy, Hilde Nesse, Maliniemi, Ville. (2022). Mesospheric nitric oxide transport in WACCM. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79c7223. Accessed 23 July 2025.

Harvest Source