Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study

This study uses the WRF large-eddy simulation model at 100-m resolution to examine the impact of ground-based glaciogenic seeding on shallow (similar to 2 km deep), cold-based convection producing light snow showers over the Sierra Madre in southern Wyoming on 13 February 2012, as part of the AgI Seeding Cloud Impact Investigation (ASCII). Detailed observations confirm that simulation faithfully captures the orographic flow, convection, and natural snow production, especially on the upwind side. A comparison between treated and control simulations indicates that glaciogenic seeding effectively converts cloud water in convective updrafts to ice and snow in this case, resulting in increased surface precipitation. This comparison further shows that seeding enhances liquid water depletion by vapor deposition, and enhances buoyancy, updraft strength, and cloud-top height. This suggests that the dynamic seeding concept applies, notwithstanding the clouds' low natural supercooled liquid water content. But the simulated cloud-top-height changes are benign (typically <100 m). This, combined with the fact that most natural and enhanced snow growth occurs in a temperature range in which the Bergeron diffusional growth process is effective, suggests that the modeled snowfall enhancement is largely due to static (microphysical) processes rather than dynamic ones.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : NCAR Command Language (NCL)

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chu, Xia
Geerts, Bart
Xue, Lulin
Rasmussen, Roy
Publisher UCAR/NCAR - Library
Publication Date 2017-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:12:20.556779
Metadata Record Identifier edu.ucar.opensky::articles:19489
Metadata Language eng; USA
Suggested Citation Chu, Xia, Geerts, Bart, Xue, Lulin, Rasmussen, Roy. (2017). Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7fn180d. Accessed 18 July 2025.

Harvest Source