Influence of continental ice retreat on future global climate

Evidence from observations indicates a net loss of global land-based ice and a rise of global sea level. Other than sea level rise, it is not clear how this loss of land-based ice could affect other aspects of global climate in the future. Here, the authors use the Community Climate System Model version 3 (CCSM3) to evaluate the potential influence of shrinking land-based ice on the Atlantic meridional overturning circulation (AMOC) and surface climate in the next two centuries under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario with prescribed rates of melting for the Greenland Ice Sheet, West Antarctic Ice Sheet, and mountain glaciers and ice caps. Results show that the AMOC, in general, is only sensitive to the freshwater discharge directly into the North Atlantic over the next two centuries. If the loss of the West Antarctic Ice Sheet would not significantly increase from its current rate, it would not have much effect on the AMOC. The AMOC slows down further only when the surface freshwater input due to runoff from land-based ice melt becomes large enough to generate a net freshwater gain in the upper North Atlantic. This further-weakened AMOC does not cool the global mean climate, but it does cause less warming, especially in the northern high latitudes and, in particular, in Europe. The projected precipitation increase in North America in the standard run becomes a net reduction in the simulation that includes land ice runoff, but there are precipitation increases in west Australia in the simulations where the AMOC slows down because of the inclusion of land-based ice runoff.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hu, Aixue
Meehl, Gerald
Han, Weiqing
Yin, Jianjun
Wu, Bingyi
Kimoto, Masahide
Publisher UCAR/NCAR - Library
Publication Date 2013-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:54:13.236577
Metadata Record Identifier edu.ucar.opensky::articles:12679
Metadata Language eng; USA
Suggested Citation Hu, Aixue, Meehl, Gerald, Han, Weiqing, Yin, Jianjun, Wu, Bingyi, Kimoto, Masahide. (2013). Influence of continental ice retreat on future global climate. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7057gsm. Accessed 18 July 2025.

Harvest Source