Inferences of predictability associated with warm season precipitation episodes

Herein preliminary findings are reported from a radar-based climatology of warm season precipitation "episodes." Episodes are defined as time-space clusters of heavy precipitation that often result from sequences of organized convection such as squall lines, mesoscale convective systems, and mesoscale convective complexes. Episodes exhibit coherent rainfall patterns, characteristic of propagating events, under a broad range of atmospheric conditions. Such rainfall patterns are most frequent under "weakly forced" conditions in midsummer. The longevity of episodes, up to 60 h, suggests an intrinsic predictability of warm season rainfall that significantly exceeds the lifetime of individual convective systems. Episodes are initiated primarily in response to diurnal and semidiurnal forcings. Diurnal forcing is dominant near the Rocky and Appalachian Mountains, whereas semidiurnal forcing is dominant between these cordilleras. A most common longitude of origin is at or near the east slope of the Continental Divide (105°W). These observations are consistent with a condition of continual thermal forcing, widespread hydrodynamic instability, and the existence of other processes that routinely excite, maintain, and regenerate organized convection. The propagation speed of major episodes is often in excess of rates that are easily attributable either to the phase speeds of large-scale forcing or to advection from low- to midlevel "steering" winds. It is speculated that wavelike mechanisms, in the free troposphere and/or the planetary boundary layer, may contribute to the rates of motion observed. Once understood, the representation of such mechanisms in forecast models offers the opportunity for improved predictions of warm season rainfall.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Carbone, R.
Tuttle, J.
Ahijevych, D.
Trier, S.
Publisher UCAR/NCAR - Library
Publication Date 2002-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T17:10:21.705892
Metadata Record Identifier edu.ucar.opensky::articles:10251
Metadata Language eng; USA
Suggested Citation Carbone, R., Tuttle, J., Ahijevych, D., Trier, S.. (2002). Inferences of predictability associated with warm season precipitation episodes. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7kw5gkp. Accessed 17 August 2025.

Harvest Source