Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations

Four model-error schemes for probabilistic forecasts over the contiguous United States with the WRF-ARW mesoscale ensemble system are evaluated in regard to performance. Including a model-error representation leads to significant increases in forecast skill near the surface as measured by the Brier score. Combining multiple model-error schemes results in the best-performing ensemble systems, indicating that current model error is still too complex to be represented by a single scheme alone. To understand the reasons for the improved performance, it is examined whether model-error representations increase skill merely by increasing the reliability and reducing the bias-which could also be achieved by postprocessing-or if they have additional benefits. Removing the bias results overall in the largest skill improvement. Forecasts with model-error schemes continue to have better skill than without, indicating that their benefit goes beyond bias reduction. Decomposing the Brier score into its components reveals that, in addition to the spread-sensitive reliability, the resolution component is significantly improved. This indicates that the benefits of including a model-error representation go beyond increasing reliability. This is further substantiated when all forecasts are calibrated to have similar spread. The calibrated ensembles with model-error schemes consistently outperform the calibrated control ensemble. Including a model-error representation remains beneficial even if the ensemble systems are calibrated and/or debiased. This suggests that the merits of model-error representations go beyond increasing spread and removing the mean error and can account for certain aspects of structural model uncertainty.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Berner, Judith
Fossell, Kathryn
Ha, Soyoung
Hacker, Joshua
Snyder, Chris
Publisher UCAR/NCAR - Library
Publication Date 2015-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:42:55.307122
Metadata Record Identifier edu.ucar.opensky::articles:16610
Metadata Language eng; USA
Suggested Citation Berner, Judith, Fossell, Kathryn, Ha, Soyoung, Hacker, Joshua, Snyder, Chris. (2015). Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7d21zst. Accessed 18 July 2025.

Harvest Source