Improvements in nonconvective aviation turbulence prediction for the World Area Forecast System

For the next generation of the World Area Forecast System (WAFS), the global Graphical Turbulence Guidance (G-GTG) has been developed using global numerical weather prediction (NWP) model outputs as an input to compute a set of turbulence diagnostics, identifying strong spatial gradients of meteorological variables associated with clear-air turbulence (CAT) and mountain-wave turbulence (MWT). The G-GTG provides an atmospheric turbulence intensity metric of energy dissipation rate (EDR) to the 1/3 power (m2/3 s–1), which is the International Civil Aviation Organization (ICAO) standard for aircraft reporting. Deterministic CAT and MWT EDR forecasts are derived from ensembles of calibrated multiple CAT and MWT diagnostics, respectively, with the final forecast provided by the gridpoint-by-gridpoint maximum of the CAT and MWT ensemble means. In addition, a probabilistic EDR forecast is produced by the percentage agreement of the individual CAT and MWT diagnostics that exceed a certain EDR threshold for turbulence (i.e., multidiagnostic ensemble). Objective evaluations of the G-GTG against global in situ EDR measurement data show that both deterministic and probabilistic G-GTG significantly improve the current WAFS CAT product, mainly because the G-GTG takes into account turbulence from various sources related to CAT and MWT. The probabilistic G-GTG forecast is more reliable at predicting light-or-greater (EDR > 0.15)- than moderate-or-greater (EDR > 0.22)-level turbulence, although it suffers from overforecasting. This will be improved in the future when we use this methodology with NWP ensembles and more observation data will be available for calibration. We expect that the new G-GTG forecasts will be beneficial to aviation users globally.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kim, Jung-Hoon
Sharman, Robert
Strahan, Matt
Scheck, Joshua W.
Bartholomew, Claire
Cheung, Jacob C. H.
Buchanan, Piers
Gait, Nigel
Publisher UCAR/NCAR - Library
Publication Date 2018-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:19:14.179461
Metadata Record Identifier edu.ucar.opensky::articles:22253
Metadata Language eng; USA
Suggested Citation Kim, Jung-Hoon, Sharman, Robert, Strahan, Matt, Scheck, Joshua W., Bartholomew, Claire, Cheung, Jacob C. H., Buchanan, Piers, Gait, Nigel. (2018). Improvements in nonconvective aviation turbulence prediction for the World Area Forecast System. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70k2ckx. Accessed 18 July 2025.

Harvest Source