Importance of the resolution of surface topography in Indian monsoon simulation

The influence of surface topography resolution in Indian summer monsoon simulation is investigated. Three sets of six-member ensemble simulations with climatological sea surface temperature are conducted with the Community Atmospheric Model, version 5.1 (CAM5.1): COARSE simulation at 1.9° × 2.5° latitude–longitude resolution, FINE simulation at 0.47° × 0.63° resolution, and HYBRID simulation, that is, using COARSE surface topography imposed on the FINE configuration. With regard to the representation of the surface topography, substantial differences occur at the regional scales between the simulations, especially over the foothills and steep flanks of the mountains. In the COARSE and HYBRID simulations, the orographic height of the foothills is overestimated whereas that of the steep flanks adjacent to the foothills is underestimated. The biases are severe (up to 1 km) over the Himalayas and Tibet and have detrimental effects on regional climate through barrier effects on the low-level flow, and the lapse rate and elevated heat source effects. Overall, the simulations show remarkable improvement with an increase in resolution, mainly because of the improved representation of atmospheric and surface processes. However, local climate -- surface air temperature, sea level pressure, precipitable water, and wind -- of the orographic regions, particularly where large orographic biases exist in COARSE, is found to benefit substantially from increased resolution of surface topography. Local precipitation and evaporation are exceptions, although, as they are negligibly sensitive to topographic resolution, showing strong dependence on the resolution of surface and atmospheric processes. Moreover, resolution of surface topography generally does not have notable remote impacts.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mishra, Saroj K.
Anand, Abhishek
Fasullo, John
Bhagat, Saurav
Publisher UCAR/NCAR - Library
Publication Date 2018-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:21:58.128464
Metadata Record Identifier edu.ucar.opensky::articles:22000
Metadata Language eng; USA
Suggested Citation Mishra, Saroj K., Anand, Abhishek, Fasullo, John, Bhagat, Saurav. (2018). Importance of the resolution of surface topography in Indian monsoon simulation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7m32zp2. Accessed 23 July 2025.

Harvest Source