Impact of anthropogenic climate change on United States major hurricane landfall frequency

Although anthropogenic climate change has contributed to warmer ocean temperatures that are seemingly more favorable for Atlantic hurricane development, no major hurricanes made landfall in the United States between 2006 and 2016. The U.S., therefore, experienced a major hurricane landfall drought during those years. Using the high-resolution Geophysical Fluid Dynamics Laboratory 25 km grid High-Resolution Forecast-Oriented Low Ocean Resolution (HiFLOR) global climate model, the present study shows that increases in anthropogenic forcing, due to increases in greenhouse gasses, are associated with fewer long-duration major hurricane landfall droughts in the U.S., which implies an increase in major hurricane landfall frequency. We create six different fixed-distance 'buffers' that artificially circle the United States coastline in 100 km radial increments and can compensate for the bias in hurricane landfall calculations with six-hourly datasets. Major hurricane landfall frequencies are computed by applying the buffer zones to the six-hourly observed and simulated storm track datasets, which are then compared with the observed recorded major hurricane frequencies. We found that the major hurricane landfall frequencies generated with the 200 km buffer using the six-hourly observed best-track dataset are most correlated with the observed recorded major hurricane landfall frequencies. Using HiFLOR with an implemented buffer system, we found less frequent projections of long-duration major hurricane landfall drought events in controlled scenarios with greater anthropogenic global warming, which is independent on the radius of the coastal buffer. These results indicate an increase in U.S. major hurricane landfall frequencies with an increase in anthropogenic warming, which could pose a substantial threat to coastal communities in the U.S.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Levin, E. L.
Murakami, Hiroyuki
Publisher UCAR/NCAR - Library
Publication Date 2019-05-10T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:29:04.405127
Metadata Record Identifier edu.ucar.opensky::articles:22704
Metadata Language eng; USA
Suggested Citation Levin, E. L., Murakami, Hiroyuki. (2019). Impact of anthropogenic climate change on United States major hurricane landfall frequency. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7q81gxp. Accessed 20 August 2025.

Harvest Source