Idealized simulations of the tropical climate and variability in the Single Column Atmosphere Model (SCAM): Radiative-convective equilibrium.

To explore the interactions among column processes in the Community Atmosphere Model (CAM), the single-column version of CAM (SCAM) is integrated for 1000 days in radiative-convective equilibrium (RCE) with tropical values of boundary conditions, spanning a parameter or configuration space of model physics versions (v5 vs. v6), vertical resolution (standard and 60 levels), sea surface temperature (SST), and some interpretation-driven experiments. The simulated time-mean climate is reasonable, near observations and RCE of a cyclic cloud-resolving model. Updraft detrainment in the deep convection scheme produces distinctive grid-scale structures in humidity and cloud, which also interact with radiative transfer processes. These grid artifacts average out in multi-column RCE results reported elsewhere, illustrating the nuts-and-bolts interpretability that SCAM adds to the hierarchy of model configurations. Multi-day oscillations of precipitation arise from descent of warm convection-capping layers starting near the tropopause, eventually reset by a burst of convective deepening. Experiments reveal how these oscillations depend critically on an internal parameter that controls the number of neutral buoyancy levels allowed for determining cloud top and computing dilute convective available potential energy in the deep convection scheme, and merely modified a little by disabling cloud-base radiation (heating of cloud base). This strong dependence of transient behavior in 1D on this parameter will be tested in the second part of this work, in which SCAM is coupled to a parameterized dynamics of two-dimensional, linearized gravity wave, and in the 3D simulations in future study.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hu, I.
Mapes, B. E.
Tulich, Stefan N.
Neale, Richard
Gettelman, Andrew
Reed, K. A.
Publisher UCAR/NCAR - Library
Publication Date 2022-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:07:04.987545
Metadata Record Identifier edu.ucar.opensky::articles:25214
Metadata Language eng; USA
Suggested Citation Hu, I., Mapes, B. E., Tulich, Stefan N., Neale, Richard, Gettelman, Andrew, Reed, K. A.. (2022). Idealized simulations of the tropical climate and variability in the Single Column Atmosphere Model (SCAM): Radiative-convective equilibrium.. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d79s1vpj. Accessed 31 July 2025.

Harvest Source