Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: A brief review

We briefly review helicity dynamics, inverse and bidirectional cascades in fluid and magnetohydrodynamic (MHD) turbulence, with an emphasis on the latter. The energy of a turbulent system, an invariant in the nondissipative case, is transferred to small scales through nonlinear mode coupling. Fifty years ago, it was realized that, for a two-dimensional fluid, energy cascades instead to larger scales and so does magnetic excitation in MHD. However, evidence obtained recently indicates that, in fact, for a range of governing parameters, there are systems for which their ideal invariants can be transferred, with constant fluxes, to both the large scales and the small scales, as for MHD or rotating stratified flows, in the latter case including quasi-geostrophic forcing. Such bidirectional, split, cascades directly affect the rate at which mixing and dissipation occur in these flows in which nonlinear eddies interact with fast waves with anisotropic dispersion laws, due, for example, to imposed rotation, stratification, or uniform magnetic fields. The directions of cascades can be obtained in some cases through the use of phenomenological arguments, one of which we derive here following classical lines in the case of the inverse magnetic helicity cascade in electron MHD. With more highly resolved data sets stemming from large laboratory experiments, high-performance computing, and in situ satellite observations, machine learning tools are bringing novel perspectives to turbulence research. Such algorithms help devise new explicit subgrid-scale parameterizations, which in turn may lead to enhanced physical insight, including in the future in the case of these new bidirectional cascades.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pouquet, Annick
Rosenberg, Duane L.
Stawarz, J.E.
Marino, R.
Publisher UCAR/NCAR - Library
Publication Date 2019-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:18:11.393321
Metadata Record Identifier edu.ucar.opensky::articles:22475
Metadata Language eng; USA
Suggested Citation Pouquet, Annick, Rosenberg, Duane L., Stawarz, J.E., Marino, R.. (2019). Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: A brief review. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79s1v3x. Accessed 26 July 2025.

Harvest Source