Dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an AOD data assimilation system

This study investigated the dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using the Weather Research and Forecasting Model with Chemistry (WRF-Chem) coupled with an aerosol data assimilation (DA) system. MODIS AOD (aerosol optical depth) data were assimilated with the Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) DA scheme to depict the Saharan dust outbreak events in the 2006 summer. Comparisons with Ozone Monitoring Instrument (OMI), AErosol RObotic NETwork (AERONET), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations showed that the system was capable of reproducing the dust distribution. Two sets of 180 h forecasts were conducted with the dust radiative effects activated (RE_ON) and inactivated (RE_OFF) respectively. Differences between the RE_ON and RE_OFF forecasts showed that low-altitude (high-altitude) dust inhibits (favors) convection owing to changes in convective inhibition (CIN). Heating in dust layers immediately above the boundary layer increases inhibition, whereas sufficiently elevated heating allows cooling above the boundary layer that reduces convective inhibition. Semi-direct effects in which clouds are altered by thermodynamic changes are also noted, which then alter cloudradiative temperature (T) changes. The analysis of a tropical cyclone (TC) suppression case on 5 September shows evidence of enhanced convective inhibition by direct heating in dust, but it also suggests that the low-predictability dynamics of moist convection reduces the determinism of the effects of dust on timescales of TC development (days).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chen, Dan
Liu, Zhiquan
Davis, Chris
Gu, Yu
Publisher UCAR/NCAR - Library
Publication Date 2017-06-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:09:46.055427
Metadata Record Identifier edu.ucar.opensky::articles:20871
Metadata Language eng; USA
Suggested Citation Chen, Dan, Liu, Zhiquan, Davis, Chris, Gu, Yu. (2017). Dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an AOD data assimilation system. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75h7jp3. Accessed 21 July 2025.

Harvest Source