Altitude extension of the NCAR-TIEGCM (TIEGCM-X) and evaluation

The upper boundary height of the traditional community general circulation model of the ionosphere-thermosphere system is too low to be applied to the topside ionosphere/thermosphere study. In this study, the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (NCAR-TIEGCM) was successfully extended upward by four scale heights from 400-600 km to 700-1,200 km depending on solar activity, named TIEGCM-X. The topside ionosphere and thermosphere simulated by TIEGCM-X agree well with the observations derived from a topside sounder and satellite drag data. In addition, the neutral density, temperature, and electron density simulated by TIEGCM-X are morphologically consistent with the NCAR-TIEGCM simulations before extension. The latitude-altitude distribution of the equatorial ionization anomaly derived from TIEGCM-X is more reasonable. During geomagnetic storm events, the thermospheric responses of TIEGCM-X are similar to NCAR-TIEGCM. However, the ionospheric storm effects in TIEGCM-X are stronger than those in NCAR-TIEGCM and are even opposites at some middle and low latitudes due to the presence of more closed magnetic field lines. Defense Meteorological Satellite Program observations prove that the ionospheric storm effect of TIEGCM-X is more reasonable. The well-validated TIEGCM-X has significant potential applications in ionospheric/thermospheric studies, such as the responses to storms, low-latitude dynamics, and data assimilation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cai, Y.
Yue, X.
Wang, Wenbin
Zhang, S.
Liu, H.
Lin, Dong
Wu, H.
Yue, J.
Bruinsma, S. L.
Ding, F.
Ren, Z.
Liu, L.
Publisher UCAR/NCAR - Library
Publication Date 2022-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:58:04.577432
Metadata Record Identifier edu.ucar.opensky::articles:25922
Metadata Language eng; USA
Suggested Citation Cai, Y., Yue, X., Wang, Wenbin, Zhang, S., Liu, H., Lin, Dong, Wu, H., Yue, J., Bruinsma, S. L., Ding, F., Ren, Z., Liu, L.. (2022). Altitude extension of the NCAR-TIEGCM (TIEGCM-X) and evaluation. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7t157hf. Accessed 12 August 2025.

Harvest Source