A weather-type-based cross-time-scale diagnostic framework for coupled circulation models

This study proposes an integrated diagnostic framework based on atmospheric circulation regime spatial patterns and frequencies of occurrence to facilitate the identification of model systematic errors across multiple time scales. To illustrate the approach, three sets of 32-yr-long simulations are analyzed for northeastern North America and for the March-May season using the Geophysical Fluid Dynamics Laboratory's Low Ocean-Atmosphere Resolution (LOAR) and Forecast-Oriented Low Ocean Resolution (FLOR) coupled models; the main difference between these two models is the horizontal resolution of the atmospheric model used. Regime-dependent biases are explored in the light of different atmospheric horizontal resolutions and under different nudging approaches. It is found that both models exhibit a fair representation of the observed circulation regime spatial patterns and frequencies of occurrence, although some biases are present independently of the horizontal resolution or the nudging approach and are associated with a misrepresentation of troughs centered north of the Great Lakes and deep coastal troughs. Moreover, the intraseasonal occurrence of certain model regimes is delayed with respect to observations. On the other hand, inter-experiment differences in the mean frequencies of occurrence of the simulated weather types, and their variability across multiple time scales, tend to be negligible. This result suggests that low-resolution models could be of potential use to diagnose and predict physical variables via their simulated weather type characteristics.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : Climate Predictability Tool version 15.3

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Muñoz, Ángel G.
Yang, Xiaosong
Vecchi, Gabriel A.
Robertson, Andrew W.
Cooke, William F.
Publisher UCAR/NCAR - Library
Publication Date 2017-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:15:42.536516
Metadata Record Identifier edu.ucar.opensky::articles:21195
Metadata Language eng; USA
Suggested Citation Muñoz, Ángel G., Yang, Xiaosong, Vecchi, Gabriel A., Robertson, Andrew W., Cooke, William F.. (2017). A weather-type-based cross-time-scale diagnostic framework for coupled circulation models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7nc63sn. Accessed 17 July 2025.

Harvest Source