A machine learning nowcasting method based on real-time reanalysis data

Despite marked progress over the past several decades, convective storm nowcasting remains a challenge because most nowcasting systems are based on linear extrapolation of radar reflectivity without much consideration for other meteorological fields. The variational Doppler radar analysis system (VDRAS) is an advanced convective-scale analysis system capable of providing analysis of 3-D wind, temperature, and humidity by assimilating Doppler radar observations. Although potentially useful, it is still an open question as to how to use these fields to improve nowcasting. In this study, we present results from our first attempt at developing a support vector machine (SVM) box-based nowcasting (SBOW) method under the machine learning framework using VDRAS analysis data. The key design points of SBOW are as follows: (1) The study domain is divided into many position-fixed small boxes, and the nowcasting problem is transformed into one question, i.e., will a radar echo >35dBZ appear in a box in 30min? (2) Box-based temporal and spatial features, which include time trends and surrounding environmental information, are constructed. (3) And the box-based constructed features are used to first train the SVM classifier, and then the trained classifier is used to make predictions. Compared with complicated and expensive expert systems, the above design of SBOW allows the system to be small, compact, straightforward, and easy to maintain and expand at low cost. The experimental results show that although no complicated tracking algorithm is used, SBOW can predict the storm movement trend and storm growth with reasonable skill.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Han, Lei
Sun, Juanzhen
Zhang, Wei
Xiu, Yuanyuan
Feng, Hailei
Lin, Yinjing
Publisher UCAR/NCAR - Library
Publication Date 2017-04-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:14:39.098604
Metadata Record Identifier edu.ucar.opensky::articles:19767
Metadata Language eng; USA
Suggested Citation Han, Lei, Sun, Juanzhen, Zhang, Wei, Xiu, Yuanyuan, Feng, Hailei, Lin, Yinjing. (2017). A machine learning nowcasting method based on real-time reanalysis data. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7154jxd. Accessed 21 July 2025.

Harvest Source