A Compressible nonhydrostatic cell-integrated semi-Lagrangian semi-implicit solver (CSLAM-NH) with consistent and conservative transport

A cell-integrated semi-Lagrangian (CISL) semi-implicit nonhydrostatic solver for the fully compressible moist Euler equations in two-dimensional Cartesian (x–z) geometry is presented. The semi-implicit CISL solver uses the inherently conservative semi-Lagrangian multitracer transport scheme (CSLAM) and a new flux-form semi-implicit formulation of the continuity equation that ensures numerically consistent transport. The flux-form semi-implicit formulation is based on a recent successful approach in a shallow-water equations (SWE) solver (CSLAM-SW). With the new approach, the CISL semi-implicit nonhydrostatic solver (CSLAM-NH) is able to ensure conservative and consistent transport by avoiding the need for a time-independent mean reference state. Like its SWE counterpart, the nonhydrostatic solver presented here is designed to be similar to typical semi-Lagrangian semi-implicit schemes, such that only a single linear Helmholtz equation solution and a single call to CSLAM are required per time step. To demonstrate its stability and accuracy, the solver is applied to a set of three idealized test cases: a density current (dry), a gravity wave (dry), and a squall line (moist). A fourth test case shows that shape preservation of passive tracers is ensured by coupling the semi-implicit CISL formulation with existing shape-preserving filters. Results show that CSLAM-NH solutions compare well with other existing solvers for the three test cases, and that it is shape preserving.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wong, M.
Skamarock, William
Lauritzen, Peter H.
Klemp, Joseph
Stull, R.
Publisher UCAR/NCAR - Library
Publication Date 2014-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T00:09:33.456565
Metadata Record Identifier edu.ucar.opensky::articles:14092
Metadata Language eng; USA
Suggested Citation Wong, M., Skamarock, William, Lauritzen, Peter H., Klemp, Joseph, Stull, R.. (2014). A Compressible nonhydrostatic cell-integrated semi-Lagrangian semi-implicit solver (CSLAM-NH) with consistent and conservative transport. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d77945m2. Accessed 13 August 2025.

Harvest Source