Identification

Title

The multi-scale interactions of atmospheric phenomenon in mean and extreme precipitation

Abstract

Climate change increases the frequency and intensity of extreme precipitation, which in combination with rising population enhances exposure to major floods. An improved understanding of the atmospheric processes that cause extreme precipitation events would help to advance predictions and projections of such events. To date, such analyses have typically been performed rather unsystematically and over limited areas (e.g., the U.S.) which has resulted in contradictory findings. Here we present the Multi-Object Analysis of Atmospheric Phenomenon algorithm that uses a set of 12 common atmospheric variables to identify and track tropical and extra-tropical cyclones, cut-off lows, frontal zones, anticyclones, atmospheric rivers (ARs), jets, mesoscale convective systems (MCSs), and equatorial waves. We apply the algorithm to global historical data between 2001-2020 and associate phenomena with hourly and daily satellite-derived extreme precipitation estimates in major climate regions. We find that MCSs produce the vast majority of extreme precipitation in the tropics and some mid-latitude land regions, while extreme precipitation in mid and high-latitude ocean and coastal regions are dominated by cyclones and ARs. Importantly, most extreme precipitation events are associated with phenomena interacting across scales that intensify precipitation. These interactions are a function of the intensity (i.e., rarity) of extreme events. The presented methodology and results could have wide-ranging applications including training of machine learning methods, Lagrangian-based evaluation of climate models, and process-based understanding of extreme precipitation in a changing climate.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7h70kvf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:13:13.551971

Metadata language

eng; USA