Identification

Title

Growth of cloud droplets by turbulent collision--coalescence

Abstract

An open question in cloud physics is how rain forms in warm cumulus as rapidly as it is sometimes observed. In particular, the growth of cloud droplets across the size gap from 10 to 50 μm in radius has not been fully explained. In this paper, the authors investigate the growth of cloud droplets by collision--coalescence, taking into account both the gravitational mechanism and several enhancements of the collision--coalescence rate due to air turbulence. The kinetic collection equation (KCE) is solved with an accurate bin integral method and a newly developed parameterization of turbulent collection kernel derived from direct numerical simulation of droplet-laden turbulent flows. Three other formulations of the turbulent collection kernel are also considered so as to assess the dependence of the rain initiation time on the nature of the collection kernel. The results are compared to the base case using the Hall hydrodynamical--gravitational collection kernel. Under liquid water content and eddy dissipation rate values typical of small cumulus clouds, it is found that air turbulence has a significant impact on the collection kernel and thus on the time required to form drizzle drops. With the most realistic turbulent kernel, the air turbulence can shorten the time for the formation of drizzle drops by about 40% relative to the base case, applying measures based on either the radar reflectivity or the mass-weighted drop size. A methodology is also developed to unambiguously identify the three phases of droplet growth, namely, the autoconversion phase, the accretion phase, and the larger hydrometeor self-collection phase. The important observation is that even a moderate enhancement of collection kernel by turbulence can have a significant impact on the autoconversion phase of the growth.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7sx6dfn

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:59:49.142320

Metadata language

eng; USA