The sensitivity of momentum transport and severe surface winds to environmental moisture in idealized simulations of a mesoscale convective system
Analysis of a pair of three-dimensional simulations of mesoscale convective systems (MCSs) reveals a significant sensitivity of convective momentum transport (CMT), MCS motion, and the generation of severe surface winds to ambient moisture. The Weather Research and Forecasting model is used to simulate an idealized MCS, which is compared with an MCS in a drier midlevel environment. The MCS in the drier environment is smaller, moves slightly faster, and exhibits increased descent and more strongly focused areas of enhanced CMT near the surface in the trailing stratiform region relative to that in the control simulation. A marked increase in the occurrence of severe surface winds is observed between the dry midlevel simulation and the control. It is shown that the enhanced downward motion associated with decreased midlevel relative humidity affects CMT fields and contributes to an increase in the number of grid-cell occurrences of severe surface winds. The role of a descending rear-inflow jet in producing strong surface winds at locations trailing the gust front is also analyzed, and is found to be associated with low-level CMT maxima, particularly in the drier midlevel simulation.
document
http://n2t.net/ark:/85065/d78p613j
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2011-05-01T00:00:00Z
Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:12:24.276012