Impact of strong and weak stratospheric polar vortices on geomagnetic semidiurnal solar and lunar tides
The impact of strong and weak stratospheric polar vortices on geomagnetic semidiurnal solar and lunar tides is investigated during Northern Hemisphere (NH) winters using ground-based magnetic field observations at the Huancayo (12.05 degrees S, 284.67 degrees E; magnetic latitude: 0.6 degrees S) equatorial observatory. We analyze the periods between December 15 and March 1 for 34 NH winters between 1980 and 2020 and find that the response of semidiurnal solar and lunar tides as seen in geomagnetic field depends on the strength of the stratospheric polar vortex. During weak polar vortex events, geomagnetic semidiurnal solar and lunar tidal amplitudes show an average enhancement by similar to 25% and similar to 50%, respectively, which is consistent with the known results during sudden stratospheric warmings. When the stratospheric polar vortex is strong, geomagnetic semidiurnal solar and lunar tidal amplitudes decline on an average by similar to 15% and similar to 25%, respectively, during weak polar vortex events. Our results also reveal that the response of the geomagnetic semidiurnal solar tidal variations to strong and weak polar vortex conditions is delayed by approximately 10 days while the response of geomagnetic semidiurnal lunar tidal variations do not show a time delay. These results provide observational evidence that along with weak polar vortices in the Northern Hemisphere, the strong stratospheric polar vortices also have pronounced effects on the equatorial ionosphere.
document
https://n2t.org/ark:/85065/d7ng4vn7
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2023-04-10T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T15:52:45.451217