Identification

Title

Humic substances may control dissolved iron distributions in the global ocean: Implications from numerical simulations

Abstract

This study used an ocean general circulation model to simulate the marine iron cycle in an investigation of how simulated distributions of weak iron-binding ligands would be expected to control dissolved iron concentrations in the ocean, with a particular focus on deep ocean waters. The distribution of apparent oxygen utilization was used as a proxy for humic substances that have recently been hypothesized to account for the bulk of weak iron-binding ligands in seawater. Compared to simulations using a conventional approach with homogeneous ligand distributions, the simulations that incorporated spatially variable ligand concentrations exhibited substantial improvement in the simulation of global dissolved iron distributions as revealed by comparisons with available field data. The improved skill of the simulations resulted largely because the spatially variable ligand distributions led to a more reasonable basin-scale variation of the residence time of iron when present at high concentrations. The model results, in conjunction with evidence from recent field studies, suggest that humic substances play an important role in the iron cycle in the ocean.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7bk1d7k

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T01:16:42.170943

Metadata language

eng; USA