Stochastic atmospheric forcing as a cause of Greenland climate transitions
An unforced simulation of the Community Climate System Model, version 4 (CCSM4), is found to have Greenland warming and cooling events that resemble Dansgaard-Oeschger cycles in pattern and magnitude. With the caveat that only three transitions were available to be analyzed, it is found that the transitions are triggered by stochastic atmospheric forcing. The atmospheric anomalies change the strength of the subpolar gyre, leading to a change in Labrador Sea sea ice concentration and meridional heat transport. The changed climate state is maintained over centuries through the feedback between sea ice and sea level pressure in the North Atlantic. Indications that the initial atmospheric pressure anomalies are preceded by precipitation anomalies in the western Pacific warm pool are discussed. The full evolution of the anomalous climate state depends crucially on the climatic background state.
document
http://n2t.net/ark:/85065/d71n82bb
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-10-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:58:12.717591