Identification

Title

Typhoon forecasts with dynamic vortex initialization using an unstructured mesh global model

Abstract

A dynamical vortex initialization (DVI) scheme is implemented on unstructured meshes for the global model MPAS for typhoon forecasts. The DVI extracts the departure vortex within a specified radius of the vortex center and implants this vortex at the observed vortex location in continuously cycled 1-h integrations of the model. The cycling integration is stopped when either the simulated central sea level pressure or maximum wind speed of the typhoon has reached the value in the best track data, denoted as P-match or V-match, respectively. The DVI may spin up the initial vortex with a more contracting eyewall, but still keeping the same size of the outer vortex. Forecasts for 16 typhoons over the western North Pacific in 2015-20 are investigated. Predictions from the experiments with the 60-15-km variable-resolution MPAS mesh show that both P-match and V-match significantly improve the track forecasts, where V-match mostly requires less cycle runs than P-match. Cycling results with P-match or V-match are also dependent on the choice of physics suites within MPAS. Positive impacts are larger for V-match than P-match using the mesoscale reference physics suite, with significantly improved track forecasts and earlier intensity forecasts. Intensity differences resulting from the DVI have gradually decreased with forecast time, which are closely correlated to the differences in the averaged tropospheric potential vorticity of the inner vortex. The DVI with the 60-15-3-km variable-resolution mesh also works well and improves intensity forecasts. The DVI can also help produce asymmetric structures and spin up inner vortex cores for typhoons near high topography, which leads to improved intensity forecasts.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sf311r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:40:42.538712

Metadata language

eng; USA